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New techniques
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• More in vivo data

• High throughput data (bigger dataset, more dense)

• More standardized



Transegic mice: cre-lines
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• Endogenous regulatory sequence + transgene of an 

“effector” protein (used to label, record, or manipulate 
target neuronal cell types).

• In binary expression systems, the regulatory sequence of 
an endogenous gene is used to express a ‘‘driver’’ 

transgene that encodes a transcription factor such as 

GAL4 or tTA, or a DNA recombinase such as Cre or FLP. 
The second, ‘‘responder’’ transgene, contains the coding 

sequence of an effector whose expression is regulated by 
either transcription factor binding sites such as UAS or 

TRE, or recombinase target sites such as loxP or FRT

• More control over timing and location of transgene 
expression

• Mix and match combination of transgenes

Guide to Research Techniques in Neuroscience
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Optogenetics
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• Microbial opsins

• Channelrhodopsin-2 (ChR2) causes 

depolarization

• Bacteriorhodopsin and Halorhodopsin

cause hyperpolarization

• They can be inserted via virus infection or 

using transgenic animals

Deisseroth, 2011

Deisseroth, 2015



Transcriptomics
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• Proteomics is limited to few preselected 
proteins

• Single-cell RNA-sequencing (scRNA-seq.)

• Sequencing of mRNA ~ proteins 
expressed by the cell ~ cell identity

• Large dataset requires statistics and 

machine learning to be analyzed

Svensson et al., 2018

Wikipedia



Tasic et al., 2016
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• Primary visual cortex (VISp or V1)

• Methods for dimensionality 

reduction, clustering, machine 

learning, validation

• Gouwens et al., 2019 uses 

morpho-electrical features to 

classify the cells. The resulting 

classification is in a good 

agreement with Tasic et al., 2016



Tasic et al., 2016
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Electrode technologies
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Hond and Lieber, 2019



Electrode technologies
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Hond and Lieber, 2019

• Extracellular electrode can record 
neurons within ~140 um

• Spikes recorded at the same 

electrode can be assigned to 

individual neurons

• Multi-unit activity (MUA) is the 

activity of several neurons that 

cannot be resolved



Electrode technologies
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Hond and Lieber, 2019



Dense reconstruction of barrel cortex layer 4
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Motta et al., 2019

Dense reconstruction of 

~500,000 µm3 of cortical tissue 
yielding 2.7 m of neuronal 

cables (~3% shown, front) 
implementing a connectome of 
~400,000 synapses between 

34,221 axons and 11,400 
postsynaptic processes.



Whole-Neuron Synaptic Mapping
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• Sparsely labelled layer 2/3 pyramidal 

neuron
• Dendritic spines as a structural proxy for 

excitatory (E) synapses. They count for 
>90% of all E synapses

• Inhibitory (I) synapses labelled with the 

inhibitory postsynaptic scaffolding protein 
Gephyrin tagged with EGFP

• Synapse Detector toolkit within Vaa3D
• Mapped over 90,000 E and I synapses
• across twelve L2/3 PNs

• E/I ratio is balanced across the dendrites

Iascone et al., 2020



Summary 1
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• The list is not exhaustive, but it provides examples from the current most 

influential techniques

• New techniques produce datasets that are closer to an in vivo condition, 

larger, denser, and more standardized

• Despite new techniques produce larger datasets, it is still not possible to 
measure “everything”

• The new datasets are larger and more complex. We need new methods to 
handle them…
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Neuroinformatics (recap)
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• Organize data

• Make data accessible

• Discover new patterns

• Highlight gaps in our knowledge

• Keep track of metadata, provenance, quality

• Keep track of data manipulation (curation, correction, conversion…)



Big data
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• Industrialization of neuroscience. Big data 
revolution. Brain initiatives

• How big? Gigabytes, terabytes, 

petabytes?

• Larger dataset may not be reducible to 

simpler descriptions. Statistics and 

machine learning may help

• The information content in raw data may 

be mostly irrelevant. Dimensionality 
reduction

DIKW pyramid



Statistics and machine learning
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• Computer vision

• Automatic or semi-automatic 
neuron tracing

• Clustering

• Spike sorting

• Dimensionality reduction

Cunningham and Yu, 2014



Summary 2
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• Larger datasets require new strategies to be handled

• Large and raw datasets are often difficult to interpret. Salient information 
should be extracted from raw data

• Statistics and artificial intelligence are becoming indispensable tools for 
neuroscientists

• How all of that influence computer models?
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Computing
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• Moorse’s law

• More performing software
• Neuromorphic computing

Kumbhar et al., 2019
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• (Rat) CA1 microcircuit
• The model consists of 100 pyramidal (P) 

cells, 2 basket (B) cells, 1 bistratified 

(BS) cell, 1 axo-axonic (AA) cell, and 1 

oriens lacunosum moleculare (OLM) cell

• Simplified morphologies including the 
soma, apical and basal dendrites and a 

portion of axon, were used for each cell 

type

• Arbitrary volume

Cutsuridis et al., 2010



Bezaire et al., 2016
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• Rat hippocampus CA1
• 350K neurons

• Detailed morphologies, no axons

• 9 morphological cell types

• Simplified volume

• Connectivity based on volume but 
not axon



Romani et al.
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• Rat hippocampus CA1
• 400K neurons

• Detailed morphologies with 

axons

• 12 morphological cell types

• Atlas-based volume
• Connectivity based on volume 

and axons



Bridging the scales
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Romani et al.Bezaire et al., 2016Cutsuridis et al., 2010

Previous examples already showed:
• a progress from microcircuitry to mesoscale circuit

• a trend towards more precise volume

• an increase in morphological details

• An increased granularity in defining cell types, connections…



Bridging the scales
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VSDI, LFP, EEG…
(Newton et al., 2021; …)

Gap junction
(Amsalem et al., 2016)

LTP / LTD
(Chindemi et al., 2022)

Markram et al., 2015



Voltage-sensitive dye imaging (VSDI)
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• Voltage-sensitive dyes are organic
molecules or proteins which reside in a

cell membrane and change their optical

properties in response to a change in

membrane potential. They have been

used to follow population changes in
membrane potential over large regions of

the brain.

• Newton et al. (2019) developed a

method to compute an in-silico VSD

signal.
Newton et al., 2021



Local-field potential (LFP)
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• The local field potential (LFP) refers to the
electric potential in the extracellular space

around neurons. The LFP is a widely

available signal in many recording

configurations, ranging from single-

electrode recordings to multi-electrode
arrays.

• Several methods are available to estimate

LFP from network parameters (Reimann

et al. 2013; Linden et al., 2014). Linden et al., 2014



MEG, EEG, ECoG
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• Improvement of LFPy (Linden et 
al., 2014)

• Magnetoencephalography (MEG), 

electroencephalography (EEG), 

electrocorticography (ECoG)

Hangen et al., 2018



Gap junction
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• Important in phenomena like high-
frequency oscillations

• Model of GJs between L2/3 large 

basket cells

• Passive properties measured in 

vitro incorporate the effect of GJs
• Introduction of GJs requires to 

readjust the passive properties

Amsalem et al., 2016



Plasticity
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• Experimental data suggesting connection-
type-specific mechanisms

• A calcium-based plasticity rule regulating 

L5-TTPC synapses holds also for several 

other pyramidal to pyramidal connections
• Synaptic physiology, cell morphology and 

innervation patterns jointly determine 
LTP/LTD dynamics without requiring a 

different model or parameter set for each 

connection type.

Chindemi et al., 2022



Summary 3
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• With the growth of computer capabilities and data availability, the models 

become larger and more complex
• New details can be added to existing models

• We start merging different scales in space and time
• New experimental techniques, new neuroinformatics methods, new models, 

all tends to one goal: better understand the human brain
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National/international initiatives
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• Blue Brain Project (Switzerland)

• Human Brain Project (EU)
• BRAIN initiative (US)

• Brain Canada (Canada)
• Australian Brain Alliance (Australia)
• China Brain Project (China)

• Korea Brain Initiative (Korea)
• Allen Institute for Brain Science (US)

• Brain/MINDS (Japan)
• Israel Brain Technologies (Israel)



Allen Human Brain Atlas
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• Two principal gene expression 
resources: (i) a global ‘all genes, all 

structures’ survey of gene expression 

(microarray); and (ii) structure- and 

gene-specific cellular resolution in situ 

hybridization (ISH) datasets

• Magnetic resonance (MR) image-

based 3D anatomic framework

• Microarray. 400–500 tissue samples 
are collected per hemisphere

Shen et al., 2012
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Big Brain
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Ultrahigh-resolution three-
dimensional (3D) model of a 

human brain at nearly cellular 

resolution of 20 micrometers

Amunts et al., 2013
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Human cell model
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• L2/3 PCs from human temporal cortex

• Cm, Ra, Rm optimized with ’Multiple 

Run Fitter’ tool of NEURON

• Cm of ~0.5 mF/cm2, instead of 
’universal’ value of ~1 mF/cm2

• such low Cm value significantly 

enhances both synaptic charge-

transfer from dendrites to soma and 

spike propagation along the axon.

Eyal et al., 2016
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• 68 billions of neurons (80% of the 
human brain)

• A tile of 1 mm2 repeated

• Neurons were modeled as 
conductance-based leaky integrate-

and-fire units

• Simplified volume

• Connections were set as a two 
dimensional Gaussian

Human-Scale Cerebellar Network Model

Yamaura et al., 2020



The Virtual Brain
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• Open-source cloud ecosystem 
on EBRAINS

• constructing, simulating and 
analyzing brain network models

• magnetic resonance imaging 

(MRI) processing pipelines

• multiscale co-simulation of 

spiking and large-scale networks

• Bayesian inference of epilepsy 

spread

www.thevirtualbrain.org



• We started to describe the human brain at cellular and subcellular level
• While the research proceeds slowly due to obvious ethical reasons, we can take 

advantage from decades of research on animal models

• The trends we observed in animal research also appear in the human research. Allen 

provided an extensive characterization of the gene expression, and Big Brain an high-

resolution reconstruction of the human brain.
• Several models also appear, from detailed single neuron model (Eyal et al., 2016) to 

large scale models with leaky integrate-and-fire neurons (Yamaura et al., 2020) to 

neural-fields model of the whole brain (The Virtual Brain).

Summary 4
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• The last decades show the emergence of new groundbreaking techniques 

that provide unprecedent high-quality large data
• Mathematic tools and artificial intelligence allow us to extract salient 

information from the big data
• This, together with more efficient computers, allows us to build more 

realistic models of the brain

• Modeling the human brain remains challenging, yet it is already happening

Lecture Summary

55


